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Shadie: A Domain-Specific Language for Volume Visualization
Category: System

Fig. 1. Left: A CT-scan displayed using a maximum-intensity projection, together with its complete Shadie source code. Right: A
time-varying lung tumor visualization combined with a radiation dose displayed using a colormap, and a cut plane to view the inside
of the lung. Part of the shader shown; the complete shader is 35 lines of code.

Abstract— Despite abundant research on volume rendering, its usage among medical professionals is still limited. We believe this
is partly due to limited flexibility of existing systems, and the difficulty of customizing them without low-level software engineering
expertise. In this paper we introduce Shadie, a GPU-based volume visualization framework built around the concept of shaders:
self-contained descriptions of the desired visualization written in a high-level Python-like language that can be written by non-experts,
often in 10-20 lines of code. Type inference and source-to-source translation to efficient CUDA code allow for interactive framerates.
The concepts of rays, transfer functions or lighting are unknown to the core renderer; instead, they are purely features of the shaders.
Furthermore, any number of datasets can be queried within a shader and combined in arbitrary ways. We show several examples
from radiation oncology, where we combine time-varying CTs, radiation dose distributions, colormaps and transfer functions in custom
visualizations. Similarly to RenderMan shaders commonly written by artists, our vision is that Shadie can be learned and used by
medical physicists or other scientists to produce highly customized but interactive visualizations.

Index Terms—Volume visualization, GPU, biomedical imaging.

1 INTRODUCTION

Volume visualization has become invaluable in a wide variety of ap-
plications in medicine, engineering, and the sciences. Examples in-
clude visualization of 3D sampled medical data (CT, MRI), seismic
data from oil and gas exploration, or computed finite element models.
However, despite a large amount of research on volume rendering and
the availability of interactive implementations, its usage among scien-
tists and medical professionals is still limited [18, 19]. We believe this
is due to limited flexibility of existing systems, and the difficulty of
customizing them without low-level software engineering expertise.
This situation is made worse with the emergence of heterogeneous
systems with multi-core CPUs and many-core GPUs, requiring paral-
lel programming experience.

While off-the-shelf visualization solutions such as Amira or OsiriX
are successful, they offer limited customizability and force the devel-
oper into a rigid plugin framework. On the other hand, software toolk-
its such as vtk offer flexibility but are primarily suited for software en-
gineers. There is currently a noticeable gap between low-level toolk-
its and all-in-one systems. We created Shadie to fill this gap and to
make custom volume visualization more accessible to researchers and
domain scientists with limited programming background. Our goal
was to provides enough low-level control so users can perform custom
mathematical operations when exploring and visualizing data, while
focusing on the high level problems using a language that is concise
and easy to learn. This is similar to the situation in computer graphics,
where artists are developing custom shaders without having to worry
about all the complexities of game engines or high-end rendering sys-
tems such as Renderan.

Our framework is built around the concept of shaders: code snip-
pets in a high-level Python-like language that define the visualization
and can be written by non-experts, often in 10-20 lines of code. While
shaders written in languages like Cg and GLSL have long been used in

volume renderers, these were usually hidden from the user and tightly
coupled with complex C++ code of the renderer itself. In contrast,
in Shadie the shader is a single, self-contained description of the de-
sired visualization, and is passed to the renderer as an argument, free-
ing the user from issues like compilation, buffer management, CPU-
GPU intercommunication, or data interpolation. Type inference and
source-to-source translation to NVIDIA’s CUDA allow for interactive
frame rates. The concepts of rays, transfer functions, lighting compu-
tations, or cut-planes are unknown to the core renderer; instead, these
are purely features of the shaders. Furthermore, traditional volume
rendering can be easily combined with ray-traced implicit surfaces or
maximum-intensity projections within the same image. Any number
of 1D, 2D, 3D or 4D (i.e. time-varying) datasets can be combined in
arbitrary ways to produce the final visualization. To evaluate Shadie,
we show several examples from radiation oncology, where we com-
bine time-varying CTs, radiation dose distributions, colormaps and
transfer functions in custom visualizations.

2 PREVIOUS WORK

Commercial systems: In addition to volume viewers that are in-
tegrated into PACS workstations or medical scanners, several volume
visualization applications are commercially supported. Popular exam-
ples include Amira [2], Osirix [27], and Fovia [11]. While most of
these provide some extensibility through plugins or APIs, they are by
and large closed systems with limited flexibility. Another tool must
be adopted if a desired calculation is not supported or if some desired
parameters are not exposed.

Dataflow environments: Several visualization frameworks adopt
a dataflow methodology, where applications are constructed by con-
necting computational elements (modules) to form a program (net-
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Fig. 2. An overview of our framework. The shader is all that the user
has to write; the rest is handled by the system.

work). This includes AVS [36], IBM Data Explorer and OpenDX [1,
20], IRIS Explorer [9], SCIRun [29], VisTrails [6, 3], VolView [37],
and vtk [32]. Despite the expressive power of these environments, the
size and complexity of these systems may be a barrier to entry for
new users. In addition, adding new functionality requires substantial
programming background and incurs a steep learning curve.

Visualization calculators: The popularity of software packages
such as MATLAB, Mathematica, Python/SciPy and R demonstrates
the power of directly performing calculations while exploring and
analyzing data. However, these systems are not optimized for large
data and fail to provide high-quality interactive rendering. Moran and
Henze [25] developed the Demand-Driven Visualizer to interactively
specify derived fields and to expedite the computation of derived fields
by using lazy evaluation. Similarly, Jankun-Kelly and Ma [17] de-
scribe a spreadsheet-like system for data exploration that provides an
interface through a scripting language for performing operations on
data. Both efforts do not make use of GPU acceleration and fail to be
interactive for larger data sets. The Scout system by McCormick et
al. [22] is a visualization DSL providing expression-based queries that
are evaluated on the data. This system is perhaps the closest previ-
ous work to Shadie; the major difference is that Scout only calculates
modified data which is then displayed by a fixed-function visualiza-
tion algorithm, while our system completely defines the visualization
itself.

Visualization toolkits: The availability of comprehensive open-
source toolkits such as vtk [32], itk [16], the InfoVis Toolkit [10], Im-
provise [38], Prefuse [15], and Protovis [5] has vastly changed and
simplified visualization practice and education. Most of these toolkits
provide a collection of visualization modules that encapsulate visu-
alization algorithms. They can be extended by creating new compo-
nents from scratch or subclassing existing components. However, this
requires significant software engineering effort and deep familiarity
with the programming model.

Shading languages: Shading languages were first introduced
with Shade Trees [8] and popularized with the RenderMan Shading
Language (RSL) [14]. The PixelFlow system introduced the first
real-time shading shading language [26], an approach that has been
adopted by GPUs with shader languages such as Cg [21], HLSL [30],
and GLSL [31]. McGuire et al. [23] propose a framework to automat-
ically combine shaders written for GPUs. Several shader languages
were developed for ray tracing and global illumination, such as the Vi-
sion global illumination system [34, 35], the BMRT ray tracer [13],
and RTSL [28]. Shadie follows a similar philosophy, but focuses
on volume visualization; furthermore, it provides a self-contained de-
scription of the whole visualization, which is not true about other shad-
ing languages (e.g. Cg requires complex binding to C code, while
RenderMan needs a separate stream of commands).

3 DESIGN GOALS AND DECISIONS

The language and system design is guided by a handful of high-level
goals:

Expressibility: The system should be capable of combining multiple
volumetric datasets, commonly available for a single patient. It

should allow for the application of a number of different transfer
functions or colormaps, and be capable of combining implicit
surfaces with volume renderings. Full support for 4D datasets
and time variation is also required. While some of this func-
tionality could be added to existing frameworks, the changes re-
quired would be quite invasive.

Ease of adoption: The target users of the system are domain scien-
tists like medical physicists, who are experienced with mathe-
matics and with scientific programming tools like MATLAB and
Python/SciPy, but not low-level software engineering. There-
fore, we want to use a familiar, existing syntax and programming
model, while striving for maximum simplicity of the code and
exposing a number of domain-specific features for convenience.
The system should also accept data in common formats used in
medical imaging.

Performance and visual quality: We desire interactive perfor-
mance, close to existing fixed-function volume visualization
implementations. Language features that would significantly
slow down rendering are therefore not acceptable. The rendering
quality should also be comparable to fixed-function systems.

Compactness: A complete visualization mode together with default
parameter settings should be defined within a single file, and run-
ning it should be as simple as passing this file to the system, with
no additional compilation, linking or configuration file manage-
ment. The complexity of the implementation itself should be
kept to a minimum, enabling ease of future extension.

Hardware abstraction: The system should take maximum advan-
tage of GPU acceleration, but at the same time should not be
tightly constrained to a single model of GPU computation. In-
stead, a potential future switch from a single GPU to a GPU clus-
ter, or to a hybrid CPU-GPU system, or from CUDA to OpenCL
should require only a change in the back-end, thus being trans-
parent to the user.

Based on these goals, we made some key design decisions:

Python-inspired DSL: We decided to embed the Shadie language
into Python syntax, which leads directly to syntax familiarity for
users of scientific programming environments, and satisfies the
hardware abstraction requirement. Furthermore, we are able to
take advantage of an existing Python parser. Python syntax is
also sufficiently rich to allow for future extensions to Shadie.

Ray-tracing model: Evaluation of functions along rays is an easily
understood concept, it is natural for volume visualization, allows
for high visual quality, and is a good fit for data-parallel compu-
tation. In our design, a Shadie program is simply a function that
takes a ray as input (specified by its two endpoints) and returns
a color for the corresponding pixel. Furthermore, a time input to
the function can be used to produce 4D (time-varying) visualiza-
tions. This model is flexible enough to satisfy our expressibility
constraints, while still simple enough to be controlled by very
few lines of code. A disadvantage of ray-tracing is that some
rendering modes (e.g., splats and glyphs) do not map to it as nat-
urally; designing an extension to Shadie to support these modes
would be an interesting future direction.

A domain-specific library and type system: We provide domain-
specific data types (floats, integers, 2-, 3-, and 4-dimensional
vectors, volumes, images) and operations (e.g. linear and cu-
bic interpolation, gradient evaluation, vector operations, reading
common image and volume formats).

Currently Shadie only handles regular volumetric data and does not
deal with curvilinear and irregular volumes or unstructured point data.
The ray tracing model is flexible enough to adapt these data types, but
they will require additional features in our language and library (e.g.,
mesh and point set data types, and operators for MLS interpolation).
This is subject for future work.
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(a) MIP (b) Position shader (c) Implicit surface (d) Volume render (e) Volume + Phong

Fig. 3. Screenshots illustrating the shaders from Section 4.

4 LANGUAGE INTRODUCTION BY EXAMPLES

A Shadie program can be thought of as a sequence of statements that,
given a ray segment, computes the color of the pixel that the ray passes
through. All visualization is assumed to take place within the unit
cube, [0,1]3, and the system automatically clips rays to the cube, tak-
ing care of camera movement and transformation matrices. The pro-
gram can access a number of predefined variables, the most important
being S and E, the start and end of the ray. A typical program will
march the ray in small steps, querying datasets and combining the
queries into colors. (However, this is not required, and the program
could ignore the ray and compute a completely unrelated quantity).

In addition, a Shadie program usually begins with a number of pa-
rameter definitions, where the parameters are either datasets (1D, 2D,
3D or 4D) or floating point constants (scalar or vector), which are
bound to the GUI and modifiable on the fly. We now introduce the
Shadie DSL using five examples with increasing complexity.

4.1 Maximum-intensity projection
In our first example, we show the complete Shadie implementation of
the simple but commonly used maximum-intensity projection (MIP),
where each pixel displays the maximum value of the volume encoun-
tered along the corresponding ray:

data = data3d(’data/ct’)

num_steps = length(E - S) / 0.002
m = 0.0

for t in linspace(0.0, 1.0, num_steps):
# compute position along ray
P = (1-t) * S + t * E

# update maximum
m = max(m, cubic_query_3d(data, P))

return m

The first line of the shader defines the dataset to load; here we use a
CT-scan of a human head and neck. Next, the number of steps to take
along the ray is adapted to the ray length. Ray-marching is performed
using the convenient linspace(a, b, n) syntax, which uniformly
distributes n samples between a and b (n does not need to be inte-
ger). The body of the loop simply computes the location along the ray
and updates the current maximum with the value queried at that loca-
tion using the cubic_query_3d function, which also provides cubic
spline interpolation using the technique of Sigg and Handwiger [33].

Running this shader, stored in a file called mip.py, is as simple as
typing:

shadie mip.py

This will bring up an interactive viewer, allowing the user to rotate
and zoom; rendering single frames into EXR images is also supported
by additional command-line arguments. The additional -p parameter
will use 2×2 progressive sub-sampling to increase performance while
camera is moved.

4.2 Position shader
In this example we ray-cast an implicit surface, displaying intersection
points simply as RGB values. We define a threshold CT value, and
march the ray until the threshold is crossed, using the current location
as the intersection. (The root could be refined by bisection, but we
omit this for simplicity.)

data = data3d(’data/ct’)

# parameters that can be modified within the GUI
thr = float_param(100, -200, 400, ’T’)
step = float_param(0.002, 0.01, 0.005, ’S’)

steps = length(E - S) / step

for t in linspace(0.0, 1.0, steps):
P = (1-t) * S + t * E
if cubic_query_3d(data, P) * 32768 > thr:

return pos

return 0

Note that the parameters thr and steps have been defined using
the float_param construct, which allows them to be modifiable by
the user in the GUI or from the command-line. The arguments of
float_param specify the default value, minimum, maximum and a
key that can be used to select the parameter. The multiplication by
32768 is currently necessary to convert the value from a normalized
range of [−1,1] into the standard Hounsfield units of CT; this require-
ment should be removed in the future.

4.3 Implicit surface with Phong shading
Next, we extend the above implicit surface shader with phong lighting:

data = data3d(’data/ct’)
thr = float_param(100, -200, 400, ’T’)
step = float_param(0.002, 0.01, 0.005, ’S’)
lightpos = float3_param(10, -10, 10)
kd = float3_param(0.05, 0.74, 0.05)

steps = length(E - S) / step
C = normalize(S - E)

for t in linspace(0.0, 1.0, steps):
P = (1-t) * S + t * E

if cubic_query_3d(data, P) * 32768 > thr:
N = -normalize(cubic_gradient_3d(data, P))
L = normalize(lightpos - P)
return phong(L, N, C, kd, 1, 20, 0.1)

return 0

The key operations are: computing C, the direction towards the
camera, determining a normal vector from the gradient queried using
cubic_gradient_3d, defining a lightsource direction, and calling
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the built-in phong function (but a custom shading model could also be
applied easily).

4.4 Volume rendering with a transfer function
Implicit surfaces are not ideal for exploring CT data; instead, tradi-
tional volume rendering with a transfer function provides a higher-
quality, cleaner visualization. The complete Shadie code looks as fol-
lows:

data = data3d(’data/ct’)
step = float_param(0.002, 0.01, 0.005, ’S’)

# transfer function params
tf = data1d_rgba(’bone.png’)
tf_pos = float_param(150, 0, 200, ’P’)
tf_width = float_param(100, 10, 400, ’W’)

steps = length(E - S) / step
result = float3(0)
see_through = 1.0

for t in linspace(0.0, 1.0, steps):
pos = (1-t) * S + t * E

# query CT
density = cubic_query_3d(data, pos) * 32768

# apply transfer function
tf_query = (density - tf_pos + tf_width)

/ (2 * tf_width)
if tf_query < 0: continue
rgba = linear_query_1d_rgba(tf, tf_query)

# accumulation
result += see_through * rgba.w * rgba.xyz
see_through *= 1 - rgba.w

# early ray termination
if see_through < 0.01: break

return result

The transfer function is stored in a 1× 256 RGBA image and
queried using linear_query_1d_rgba, though one might as well
compute a transfer function using just arithmetic operations. The vari-
ables tf\_pos and tf\_width control the location and width of
the transfer function when applied to the CT data. Not that Shadie
supports swizzle operators introduced in the Cg language using the
syntax rgba.xyz, allowing for extraction of multiple components of
a vector at once. (The above shader is slightly incorrect, because the
transparency values returned from the transfer function should corre-
spond to extinction over a fixed distance, and should be corrected if
the step size changes; we ignore this for simplicity.)

4.5 Volume rendering with Phong shading
Finally, we apply Phong shading to the colors supplied by the transfer
function, improving the perception of surface orientation and curva-
ture. Furthermore, we also introduce the opacity variable to enable
additional scaling of the alpha values returned from the transfer func-
tion. Below we present the modified loop:

for t in linspace(0.0, 1.0, steps):
P = (1-t) * S + t * E

# query CT
density = cubic_query_3d(data, P) * 32768

# apply transfer function
tf_query = (density - tf_pos + tf_width)

/ (2 * tf_width)
if tf_query < 0: continue
rgba = linear_query_1d_rgba(tf, tf_query)

Fig. 4. Images from radiation oncology applications of Shadie, de-
scribed in Section 5. Top: 4D (time-varying) visualization of a lung tu-
mor using a cut-plane, with the radiation dose displayed as a colormap,
showing two different dose thresholds. Middle: A combination of volume
rendering within delineated tumor area, and maximum-intensity projec-
tion outside. Bottom: A view of the lungs computed by skipping the
chest wall within the shader.

# Phong shading
N = -normalize(cubic_gradient_3d(data, P))
L = normalize(lightpos - P)
color = phong(L, N, C, rgba.xyz, 1, 50, 0.5)

# accumulation
result += see_through * rgba.w * opacity * color
see_through *= 1 - rgba.w * tf_opacity

# early ray termination
if see_through < 0.01: break

In about 20 lines of Shadie code (not counting comments and blank
lines), we implemented a fairly full-featured volume renderer and de-
fined its default inputs and parameter values. In Section 5 we explore
more complex examples.

5 RADIATION ONCOLOGY EXAMPLES

Radiation oncology aims to eliminate tumor cells by precisely target-
ing them with large doses of X-ray or proton radiation. It is an area
that can utilize an immense amount of volume data about any given
patient – CT, MRI and PET scans, radiation dose distributions com-
puted by Monte Carlo simulation, tumor delinations manually drawn
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by physicians, etc. Some or all of these datasets can be time-varying
(four-dimensional), which becomes particularly important when tar-
geting tumors affected by motion due to the breathing cycle. There-
fore, we think that radiation oncology is a good example of a domain
that could greatly benefit from Shadie’s ability to produce interactive
volume visualizations that combine multiple datasets in custom ways.

In the following, we show three examples inspired by radiation on-
cology, each of which can be expressed by short and elegant Shadie
code, but would require relatively invasive changes to off-the-shelf
volume renderers. The results of these visualizations can be seen in
Figure 4 and also in the accompanying video.

5.1 Combined 4D anatomy and dose
This example shows a 4D (i.e. time-varying) CT anatomy of a patient
with a lung tumor, together with a time-varying radiation dose distri-
bution overlayed as a colormap. We also need a cut plane to be able
to view the inside of lungs. To implement this in Shadie, we introduce
a few extensions to the last volume rendering shader from Section 4.
First, we use data4d to load the datasets:

ct = data4d(’data/lung/ct’)
dose = data4d(’data/lung/dose’)

We also load the colormap as a 1D image, define a threshold and
maximum for the colormapped dose display, and a cut plane distance:

colormap = data1d_rgba(’jet.png’)
dose_threshold = float_param(100, 0, 200, ’T’)
dose_max = float_param(196, 0, 200, ’M’)
cut = float_param(-1, -1, 1, ’C’)

To achieve time variation, we compute the frame number from the
predefined variable T, which specifies the current time in seconds, and
use the 4D versions of the query functions. Shadie also allows for
specifying a cut plane normal and distance directly in the query func-
tion for convenience (though other cut volumes could be implemented
directly within the shader):

# compute frame number
frame = fmod(T*5, 10)

# query 4D CT using a cut plane
density = cubic_query_4d_cut(ct, P, C, cut, frame)

* 32768

Within the ray marching loop, we can then query the dose value, com-
pare to threshold, and replace the color given by the transfer function
by the one returned by the colormap if necessary:

# compute colormapped dose
dose_value = linear_query_4d(dose, P, frame) * 32768
if dose_value > dose_threshold:

color = linear_query_1d_rgba(colormap,
dose_value / dose_max).xyz

# use color for shading as usual ...

The result is shown in the top of Figure 4.

5.2 Combined volume and MIP rendering
Before radiation treatment, a physician usually draws the outline of
the tumor on 2D slices. This delineation can be treated as another
volume, where a value of 1 indicates a point inside the tumor volume
and 0 outside. We show a visualization making use of this information,
using a volume-rendered representation of the tumor and a maximum-
intensity projection for rays that miss the tumor. This technique can be
useful for locating the tumor, which can be difficult using only transfer
functions and cut planes. The Shadie implementation of the idea is
straightforward:

m = 0.0

for t in linspace(0.0, 1.0, steps):
P = (1-t) * S + t * E

# query CT
density = cubic_query_3d(ct, P) * 32768

# outside tumor volume?
if linear_query_3d(itv, P) == 0:

m = max(m, density)
continue

# apply transfer function as usual ...

if result == float3(0):
return m * pow(2, exposure)

return result

The result is shown in the middle of Figure 4.

5.3 Unobstructed view of lungs
In this example, we inspect the bronchial tubes of a different patient by
traditional volume rendering, but starting the accumulation only after
the ray gets inside the lung. This is achieved by defining two thresh-
olds, τ1 and τ2, and starting the rendering only after the CT density
first crosses above τ1 and then below τ2, thus skipping the chest wall.
To implement this in Shadie, we keep track of the phase the ray is in:
phase 0 occurs before crossing τ1, and similarly phase 1 lasts until τ1
is crossed; phase 2 then triggers volume rendering:

phase = 0

for t in linspace(0.0, 1.0, steps):
P = (1-t) * S + t * E

density = cubic_query_3d(data, P) * 32768

if phase == 0 and density > tau1: phase = 1
if phase == 1 and density < tau2: phase = 2

if phase == 2:
# continue with standard volume rendering

The result is shown in the bottom of Figure 4.

5.4 Radiotherapy-specific computation within the shader
In the final example, we apply the system to computation and visu-
alization of quantities specific to radiation oncology directly in the
shader. For any given point of the rendered anatomy, we compute the
standard deviation of the radiation dose (treated as a time sequence),
which helps in identifying areas of large variation due to lung move-
ment and thus an increased danger of incorrect treatment. With a sim-
ilar approach, we can estimate the probability of tumor cell survival
given the dose distribution using the linear-quadratic model from ra-
diobiology [12]. The results are shown in Figure 5.

6 IMPLEMENTATION

In this section, we describe the implementation of Shadie: type in-
ference, translation to intermediate representation, CUDA kernel gen-
eration, and rendering. Note, however, that this does not correspond
chronologically to how we developed Shadie; in reality, we imple-
mented the system by writing a fixed-function volume renderer in
CUDA and then taking away functionality from the renderer, mak-
ing it accessible only through shaders, and finally raising the level of
abstraction of the shaders.

6.1 Type system and inference
Since CUDA is an explicitly typed language, we have to determine the
type of every variable in a Shadie program at translation time. This
would be impossible for general Python code, where the type of a
variable can depend on the actual execution path, and therefore can-
not be determined at compile-time; an overview of the issues can be
found in [7]. We also considered a Hindley-Milner type system [24],
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Fig. 5. Left: Standard deviation of the radiation dose treated as a time
sequence, computed directly in the shader and displayed for points
above a given dose threshold. Right: the probability of tumor cell
survival aftr 5 radiation fractions, estimated using the linear-quadratic
model.

where the most general type is determined for each variable by solving
a system of type equations; however, we found that we would have to
extend the system with a fixed hierarchy of numeric type classes sim-
ilar to the one in the NESL language [4]. The complexity of such a
system would not be suitable for a DSL designed for non-experts.

Instead, we designed a simple type system for Shadie, where every
variable is of type data, boolean, int, float, or a 2-, 3-, or 4-
element vector of int-s or float-s, e.g. float3 or int2. (We also
intend to add suppport for 2×2, 3×3 and 4×4 matrices of float-s
in the future.) The language supports coercion (automatic typecasting)
between several pairs of types, e.g., an int can be coerced to a float,
a float can become a float3, etc. We can denote this relationship
by the v relation, as in float v float3. Figure 6 gives a graphical
overview of the type system.

Furthermore, Shadie distinguishes between functions and oper-
ators. Functions have a single type signature, e.g., the function
length always takes a single float3 argument and returns a single
float (though functions will automatically coerce their arguments,
so length(1) will be accepted as valid and return

√
3). On the

other hand, operators accept exactly two arguments of any compa-
rable types, i.e., where one of the types can be coerced to the other,
and return the higher of the two types (with respect to the v relation).
Therefore, an expression that adds, say, an int and a float3 is ac-
ceptable and will have the obvious effect of adding the int to all three
elements of the float3. There are some paradoxical cases: for exam-
ple the “functions” min and max are in fact operators, while inequality
relations (but not equality) are actually functions, and cannot be used
ot compare vectors.

To enable efficient type inference, we introduce the following rules,
which differ from standard Python semantics:

1. Every variable’s type is determined at its first assignment, and
cannot change later.

2. A variable defined in a nested statement block is local to that
statement block.

The first rule guards against cases where a variable determined to be
float is later assigned an int2 value, or similar. The second rule pro-
tects against situations where one branch of an if-statement defines a
variable to be float while the other branch makes it a boolean. The
two rules also allow for a straightforward implementation of type in-
ference in a single pass. We implement the type inference and transla-
tion in the Haskell programming language, which is ideally suited for
source code manipulations.

6.2 Translation and execution
After types of all variables have been determined, we translate the
shader into an intermediate representation, which constitutes a valid

Fig. 6. The simple type system of Shadie. The directed edges in the
graph correspond to types where automatic coercion is supported.

CUDA code snippet (though not a complete kernel). For example, the
MIP shader from Section 4 will be translated into:

DATA3D(data, ’data/ct’)
float num_steps = length(E - S) / 2.0e-3;
float m = 0.0;
float t = 0.0;
for (; t < 1.0; t = t + (1.0 - 0.0) / (num_steps - 1))
{

float3 P = make_float3(1 - t) * S
+ make_float3(t) * E;

m = max(m, cubic_query_3d(data, P));
}
return make_float3(m);

Note that type declarations have been filled in, and some explicit
typecasts have been inserted; the linspace operation was expanded
to a standard C-style loop. Furthermore, the data3d defninition has
been translated to a special DATA3D directive; this is also the case for
any parameter definitions.

An advanced user can write shaders directly in the intermediate lan-
guage; passing a .cu file to Shadie works just as well as a .py file.
This can be useful if advanced features of CUDA are required (e.g.
pointers or shared memory).

The intermediate representation is converted into a full CUDA ker-
nel in several steps:

• The dataset definitions are converted into CUDA texture decla-
rations. Furthermore, the data is loaded into GPU memory and
bound to the textures. The system currently supports the DICOM
and MHA formats, common in medical imaging, plus a number
of image formats.

• The parameter definitions are parsed and used to create a custom
Params structure, which is filled and sent to the kernel for every
rendered frame (since the parameters can be changed on the fly).

• A header and footer is added to the kernel. The header contains
a number of convenience functions, including many versions of
linear and cubic queries, while the footer defines the actual entry
point and takes care of matrix transformations, ray clipping to
unit cube, etc.

Finally, the CUDA kernel is compiled, and executed for every frame
rendered.

7 PERFORMANCE

Our video sequences were recorded on a single workstation with 4
quad-core Intel i7 CPUs and a single NVIDIA Tesla C1060 used for
rendering; the CPUs are currently largely unused. A GeForce 260 was
used as a display adapter.

In most of our examples, we use 2× 2 subsampling while the user
interacts with the system, and refine to a single ray per pixel when
interaction stops, thus increasing the interactive performance about 4
times at the expense of temporarily lower quality; this feature is not
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Example frame time (s) fps
MIP 0.24 4.2
Position 0.17 5.9
Implicit 0.13 7.7
TF 0.16 6.3
Phong 0.17 5.9
Dose 0.25 4.0
MIP + Vol 0.35 2.9
Lung 0.14 7.2

Table 1. The median frame rendering times for our examples, and the
corresponing median frames-per-second.

used for the time-varying view. Table 1 shows rendering times per
frame and frames per second, computed as the median difference be-
tween timestamps of successive frames in our recordings. Note that
cubic interpolation for queries and gradients is the most expensive op-
eration in our shaders; linear interpolation or larger step size can be
used to speed up rendering at the expense of lower quality.

8 CONCLUSIONS AND FUTURE WORK

We present Shadie, a domain-specific language and framework for
rapid development of complex custom volume visualizations. The
framework is designed to be simple enough to be used by non-
programmers, while still providing interactive performance. We have
demonstrated the effectiveness of the system in several examples from
radiation oncology. We see a lot of potential in combining compu-
tation and visualization in our framework, and we believe domain-
specific languages are the right tool to expose the massive parallelism
of GPUs to non-expert users.

An interesting future direction would be to augment the language
with more data types, such as irregular meshes and unstructured point
clouds. These data types will require additional operators, such as
MLS interpolation. Language features like user-definable functions
and records would be very useful and relatively easy to implement. We
also want to investigate if preintegration can be added as a language
feature, potentially improving rendering quality and performance at
the expense of a precomputation step. We also plan to expand the
automatically generated GUI and enable others to implement custom
GUI visualization tools on top of Shadie. Finally, we are planning to
make the language and framework openly available and hope to get a
user community to contribute custom shaders.
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